A Predictive Model to Evaluate Student Performance
نویسندگان
چکیده
In this paper we propose a new approach based on text mining techniques for predicting student performance using LSA (latent semantic analysis) and K-means clustering methods. The present study uses free-style comments written by students after each lesson. Since the potentials of these comments can reflect student learning attitudes, understanding of subjects and difficulties of the lessons, they enable teachers to grasp the tendencies of student learning activities. To improve our basic approach using LSA and k-means, overlap and similarity measuring methods are proposed. We conducted experiments to validate our proposed methods. The experimental results reported a model of student academic performance predictors by analyzing their comments data as variables of predictors. Our proposed methods achieved an average 66.4% prediction accuracy after applying the k-means clustering method and those were 73.6% and 78.5% by adding the overlap method and the similarity measuring method, respectively.
منابع مشابه
Incremental Predictive Command of Velocity to Be Gained Guidance Method
In this paper, a new incremental predictive guidance method based on implicit form of velocity to be gained algorithm is proposed. In this approach, the generalized incremental predictive control (GIPC) approach is applied to the linearized model for compensating the guidance error. Instead of using the present state in popular model based predictive controller (MPC), in the new method both pre...
متن کاملExtracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملThe Predictive Factors of Job Performance in Nurses' Moral Distress
Background: Moral distress is one of the most complex ethical problems for nurses working in Intensive Care Units. Desired job performance of the nurse guarantees the quality of health care provided to patients and is an important factor in accelerating the process of treatment and recovery of patients. This study was conducted to investigate the predictive factors of job performance in nursesc...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملUsing contingency approach to improve firms’ financial performance forecasts
One of the challenging issues for investors and professionals is appropriate models to evaluate financial situation of the firms. In this regard, many models have been extracted by researchers using different financial ratios to resolve these issues. However, choosing a model based on the conditions and users’ needs is complex. The main objective of this study is to identify the effect of conti...
متن کاملModel Predictive Inferential Control of a Distillation Column
Typical production objectives in distillation process require the delivery of products whose compositions meet certain specifications. The distillation control system, therefore, must hold product compositions as near the set points as possible in faces of upset. In this project, inferential model predictive control, that utilizes an artificial neural network estimator and model predictive cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- JIP
دوره 23 شماره
صفحات -
تاریخ انتشار 2015